来自德国斯图加特大学Achim Menges教授的分享。在过去我们还曾介绍过 Landesgartenschau Exhibition Hall (已有六条评论)和 ICD/ITKE Research Pavilion 2011 (已有五条评论)。

斯图加特Achim Menges教授在新作 ICD/ITKE亭中展示了一种全新的建筑,其灵感来自于生活在水下,并居住在水泡中的水蜘蛛的建巢方式。整个亭子是在一层柔软的薄膜内部用机器人织上可以增强结构的碳纤维而形成的轻型纤维复合材料外壳构筑物,同时这种建造方式使用到最少的材料实现了结构稳定性。该建筑原型的探索是斯图加特大学计算研究所设计(ICD)和建筑结构研究所(ITKE)在2014--2015年的研究成功,在计算机设计,仿真设计以及制造工艺领域有广泛的应用前景。


ICD/ITKE RESEARCH PAVILION 2014-15 - Stuttgart 2015Institute for Computational Design (ICD) - Prof. Achim MengesInstitute of Building Structures and Structural Design (ITKE) - Prof. Dr.-Ing. Jan Knippers University of Stuttgart, Faculty of Architecture and Urban Planning

The ICD/ITKE Research Pavilion 2014-15 demonstrates the architectural potential of a novel building method inspired by the underwater nest construction of the water spider. Through a novel robotic fabrication process an initially flexible pneumatic formwork is gradually stiffened by reinforcing it with carbon fibers from the inside. The resulting lightweight fiber composite shell forms a pavilion with unique architectural qualities, while at the same time being a highly material-efficient structure.

The Institute for Computational Design (ICD) and the Institute of Building Structures and Structural Design (ITKE) continue their series of research pavilions with the new ICD/ITKE Research Pavilion 2014-15 at the University of Stuttgart. These building prototypes explore application potentials of novel computational design, simulation and fabrication processes in architecture. The pavilion was developed at the intersection of the two institute’s research fields and their collaborative teaching in the context of the interdisciplinary and international ITECH MSc program. This prototypical project is the result of one and a half years of development by researchers and students of architecture, engineering and natural sciences.



The design concept is based on the study of biological construction processes for fiber-reinforced structures. These processes are relevant for applications in  architecture, as they do not require complex formwork and are capable of adapting to the varying demands of the individual constructions.

The biological processes form customized fiber-reinforced structures in a highly material-effective and functionally integrated way. In this respect the web building process of the diving bell water spider, (Agyroneda Aquatica) proved to be of particular interest. Thus the web construction process of water spiders was examined and the underlying behavioral patterns and design rules were analyzed, abstracted and transferred into a technological fabrication process.

The water spider spends most of its life under water, for which it constructs a reinforced air bubble to survive. First, the spider builds a horizontal sheet web, under which the air bubble is placed. In a further step the air bubble is sequentially reinforced by laying a hierarchical arrangement of fibers from within. The result is a stable construct that can withstand mechanical stresses, such as changing water currents, to provide a safe and stable habitat for the spider. This natural production process shows how adaptive fabrication strategies can be utilized to create efficient fiber-reinforced structures.

For the transfer of this biological formation sequence into a building construction application, a process was developed in which an industrial robot is placed within an air supported membrane envelope made of ETFE. This inflated soft shell is initially supported by air pressure, though, by robotically reinforcing the inside with carbon fiber, it is gradually stiffened into a self-supporting monocoque structure. The carbon fibers are only selectively applied where they are required for structural reinforcement, and the pneumatic formwork is simultaneously used as a functionally integrated building skin. This results in a resource efficient construction process.

At the beginning of the design and construction process, the shell geometry and main fiber bundle locations are generated by a computational form finding method, which integrates fabrication constraints and structural simulation. In order to determine and adjust the fiber layouts a computational agent-based design method has been developed. Similar to the spider, a digital agent navigates the surface shell geometry generating a proposed robot path for the fiber placement. The agent behavior is derived from a variety of interrelated design parameters. This computational design process enables the designer to navigate and simultaneously integrate these design parameters into various performative fiber orientations and densities.


Corresponding to the adaptive computational design strategy, a prototypical robotic fabrication process was developed for carbon fiber reinforcement on the inside of a flexible membrane. The changing stiffness of the pneumatic formwork and the resulting fluctuations in deformation during the fiber placement process pose a particular challenge to the robot control. In order to adapt to these parameters during the production process the current position and contact force is recorded via an embedded sensor system and integrated into the robot control in real time. The development of such a cyber-physical system allows constant feedback between the actual production conditions and the digital generation of robot control codes. This represents not only an important development in the context of this project, but more generally provides new opportunities for adaptive robotic construction processes.


The prototypical character of the fabrication process required the development of a custom made robot tool that allows placement of carbon fibers based on integrated sensor data. The technical development of this tool became an integral part of the architectural design process. This process also posed special challenges for the material system. ETFE was identified as a suitable material for the pneumatic formwork and integrated building envelope, since it is a durable facade material and its mechanical properties minimize plastic deformation during the fiber placement. A high degree of functional integration is achieved through the use of the ETFE film as pneumatic formwork and building envelope. This saves the material consumption of conventional formwork techniques as well as an additional fa?ade installation. A composite adhesive provided a proper bond between the ETFE film and the carbon fibers. During production nine pre-impregnated carbon fiber rovings are placed in parallel. 45km of carbon roving were laid at an average speed of 0.6 m min on 5km of robot path. This additive process not only allows stress-oriented placement of the fiber composite material, but it also minimizes the construction waste associated with typically subtractive construction processes. The ICD / ITKE Research Pavilion 2014-15 covers an area of about 40m2 and an internal volume of approximately 130m3 with a span of 7.5m and a height of 4.1m. The total construction weight is just 260kg, which corresponds to a weight of 6.5kg / m2.

The ICD / ITKE Research Pavilion 2014-15 serves as a demonstrator for advanced computational design, simulation and manufacturing techniques and shows the innovative potential of interdisciplinary research and teaching. The prototypical building articulates the anisotropic character of the fiber composite material as an architectural quality and reflects the underlying processes in a novel texture and structure. The result is not only a particularly material-effective construction, but also an innovative and expressive architectural demonstrator.

PROJECT-DATAAdress Keplerstr. 11-17, 70174 Stuttgart, GermanyCompletion June 2015Area 40 m2Volume 130 m3Span 7.5 mHeight 4.1 mConstruction weight 260 kg

MORE: Achim Menges




【专筑网版权与免责声明】: 本网站注明“来源:专筑网”的所有内容版权属专筑网所有,如需转载,请注明出处,违者将追究其法律责任。



投稿邮箱         如何向专筑投稿?



登录专筑网  |  社交账号登录: